Recurrent Neural Network Based Language Modeling in Meeting Recognition

نویسندگان

  • Stefan Kombrink
  • Tomas Mikolov
  • Martin Karafiát
  • Lukás Burget
چکیده

We use recurrent neural network (RNN) based language models to improve the BUT English meeting recognizer. On the baseline setup using the original language models we decrease word error rate (WER) more than 1% absolute by n-best list rescoring and language model adaptation. When n-gram language models are trained on the same moderately sized data set as the RNN models, improvements are higher yielding a system which performs comparable to the baseline. A noticeable improvement was observed with unsupervised adaptation of RNN models. Furthermore, we examine the influence of word history on WER and show how to speed-up rescoring by caching common prefix strings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Bidirectional Recurrent Neural Network Language Models for Speech Recognition

Recurrent neural network language models (RNNLMs) are powerful language modeling techniques. Significant performance improvements have been reported in a range of tasks including speech recognition compared to n-gram language models. Conventional n-gram and neural network language models are trained to predict the probability of the next word given its preceding context history. In contrast, bi...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

RNNLM - Recurrent Neural Network Language Modeling Toolkit

We present a freely available open-source toolkit for training recurrent neural network based language models. It can be easily used to improve existing speech recognition and machine translation systems. Also, it can be used as a baseline for future research of advanced language modeling techniques. In the paper, we discuss optimal parameter selection and different modes of functionality. The ...

متن کامل

Sequence memoizer based language model for Russian speech recognition

In this paper, we propose a novel language model for Russian large vocabulary speech recognition based on sequence memoizer modeling technique. Sequence memoizer is a long span text dependency model and was initially proposed for character language modeling. Here, we use it to build word level language model (LM) in ASR. We compare its performance with recurrent neural network (RNN) LM, which a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011